2019 GMCA Meeting

First Session

- 1. Annie Thompson AMCA Washington Day Update
 - a. Key topics
 - i. SMASH Act funding for local mosquito control
 - ii. REDTAPE Act reduce duplicative permitting from EPA
 - iii. Reform of Endangered Species Act
 - b. Current mosquito update given to legislators
- 2. Mickey Taylor Pesticide Update
 - a. Online study guides call or email Mickey for link
 - i. 3 courses for core manual
 - ii. 1 course for mosquito control manual
 - b. UGA Safety Education Program https://extension.uga.edu/programsservices/pesticide-safety-education.html
 - c. Currently has CAT 24 and CAT 41 Study Guides online
 - d. Online study guides can replace the paper manuals
 - e. Good continuing education information
 - f. Pollinator protection information
- 3. Bobby Moulis- WNV in Chatham County, 2019
 - a. Long history with mosquito-borne diseases
 - b. CCMC established in 1957
 - i. Building out on barrier islands
 - ii. Large salt marsh mosquito problem
 - c. Early data collected with New Jersey light traps
 - i. Henry Lewandowski switched program to CDC light traps
 - ii. Started using gravid traps for WNV surveillance
 - d. Truck trap
 - e. Testing used to be through the CDC
 - i. Results took months
 - ii. Mosquito slurry was injected into mice
 - f. 1980s chicken sentinel program started
 - i. Focus on EEE
 - ii. Coops stationed behind someone's house in the rural areas
 - iii. Added WNV testing, but results took too long
 - g. WNV
 - i. Started using UGA to test mosquitoes for virus when WNV was introduced
 - ii. Early testing included birds and mosquitoes
 - iii. Human data take too long to be reported
 - iv. Horse positives are extremely limited
 - h. Using the data
 - i. Created a core area where WNV is found every year hot spot
 - ii. This has been added to over time
 - iii. Use thresholds for determining when to spray
 - i. Sentinel chicken program
 - i. Birds are now elevated up into the canopy
 - ii. Single birds in an exit trap cage can collect the mosquitoes

- iii. Primarily for EEE, but do occasionally get WNV seroconversion
- j. What happened in 2019
 - i. WNV started earlier
 - ii. Huge jump in positives in July
 - iii. Still getting a few positives
 - iv. Most of the positives are from the hot zone
- 4. Christopher Slaton & Emily Evans Mosquito Research at VSU: Heartworm Prevalence and Insecticide Resistance Studies
 - a. Dirofilaria immitis
 - i. Vector a variety of different species
 - 1. Vectors vary by regions
 - 2. Competency varies by region
 - ii. Current study
 - 1. List of all vectors in the South Georgia/North Florida region
 - 2. Compare species abundance and infection rates in urban vs rural areas
 - a. 8 urban sites Valdosta, GA
 - b. 8 rural sites Greenville, FL (Dixie Plantation)
 - iii. Trap types CDC and gravid
 - iv. Testing done through gel electrophoresis
 - v. Used only head and thorax determine positive mosquitoes that could transmit the parasite
 - vi. Results
 - 1. 15240 mosquitoes collected
 - a. 29 species
 - b. Pooled 944 for DNA extraction 23 species
 - 2. Urban/rural sites were 81.5% dissimilar as far as abundance
 - b. Permethrin Resistance in Aedes albopictus
 - i. Mechanisms of resistance
 - 1. Behavioral
 - 2. Physical
 - 3. Physiological
 - ii. Objectives of study
 - 1. Baseline data
 - 2. Presence of KDR resistance
 - iii. Collection
 - 1. Black 9 oz cups
 - a. Hay infusion
 - b. Textured paper
 - 2. Wooden clothespin to secure paper
 - iv. 16 locations in Valdosta
 - 1. 2 control sites
 - 2. 14 sites where pesticides are sprayed
 - v. Bottle bioassay test requires 100 mosquitoes
 - 1. 97-100% susceptible
 - 2. 90-96% possibility of resistance
 - 3. <90% resistance
 - vi. Results
 - 1. Resistance seen only 50% mortality seen at 10 minutes

- a. Currently working on PCR to detect KDR alleles
- 5. Jessi Howard Kenney Lessons Learned from Advancement in Mosquito Control Operations
 - a. IPM programs
 - b. First line of defense
 - i. Surveillance
 - ii. Larviciding
 - c. Baseline data
 - d. Programs
 - i. Hurricane response
 - ii. WNV response
 - iii. EEE response
 - iv. Public education
 - 1. Community events
 - 2. Schools
- 6. Industry Spotlight
 - a. AllPro Vector Carlos Gonzales
 - b. ServDay Dr Zia Siddiqi & Ammol Duggal
 - i. Integrated vector management software
 - ii. Complete tool for managing a vector control program
 - 1. Scheduling
 - 2. Tracking people, equipment, pesticide
 - 3. Accounting
 - 4. Social media
 - 5. Data collection
 - iii. Real-time geospatial data
 - 1. Spatial display
 - 2. Spatial analysis
 - iv. Capture image and audio
 - v. Lab data
 - 1. Disease
 - 2. Insecticide resistance
 - vi. Cloud-based
 - vii. External data integration
 - c. Target Specialty Products Steve Molnar
- 7. Andrew Ruiz Recent Assessment of Tick Activities in Environmental Health Programs in the US
 - a. NACCHO assessment https://essentialelements.naccho.org/archives/tag/tick
 - b. 2004-2016: ticks accounted for 76.5% of vector-borne diseases
 - i. Ranges are expanding
 - ii. New TBDs are showing up
 - c. Assessment
 - i. 9 states
 - 1. 8 local programs
 - 2. 1 tribal program
 - ii. Both low and high capacity areas
 - iii. Pre-interview questionnaire
 - iv. Phone interview
 - v. Questions
 - 1. Level of involvement

- 2. Best practices/resources
- 3. Unmet technical needs
- vi. Results
 - 1. 8 of 9 programs doing some tick activities
 - 2. 5 programs reported ticks were a priority
 - 3. 7 reported receiving no funding
 - 4. Community education was the most common tick-related activity reported
- vii. Surveillance
 - 1. Passive
 - a. Human attached tick study
 - b. Animal attached tick study
 - 2. Flagging
 - 3. Identification
- viii. Challenges
 - 1. Funding and staffing
 - 2. Routine tick surveillance
 - 3. Access to human case information
 - 4. Training
- ix. Successes
 - 1. Even some information is better than nothing
 - 2. Internal and external partnerships help
 - 3. Community engagement is important for understanding priorities
- 8. Ray King LaCrosse Virus in the Appalachians: A State Park Case Example
 - a. Focus of LAC at the border of Georgia, TN, and North Carolina
 - b. 2 unreported cases of LAC in state park near Chatsworth, GA
 - i. One was an out-of-State visitor
 - ii. One was a child of a park employee
 - c. Strategy Meeting
 - i. Public Health
 - ii. City of Chatsworth
 - iii. State Park
 - d. Plan
 - i. Surveillance
 - ii. Educational posters
 - iii. Barrier spray
 - iv. Repellents
 - v. Larviciding
 - e. Area
 - i. Spring near campgrounds
 - ii. Creek fed by spring
 - iii. Flood plain
 - 1. Trees grew in flood plain and died
 - 2. Lots of tree holes
 - 3. Holes filled in by state park personnel over winter
 - 4. Area treated with larvicide
 - iv. Lots of chipmunks
 - v. Lots of Aedes albopictus, but they are likely not involved in transmission

- f. No further human cases associated with park
- g. Ochlerotatus triseriatus
 - i. Populations fluctuate yearly
 - ii. Infected females more effective at mating
 - iii. Virus transferred vertically and venereally
- 9. Paul Efird Mobile County Vector Services: A History of Prevention
 - a. Some history
 - i. Mobile was founded in 1702
 - ii. 1704 yellow fever outbreak
 - 1. Yearly yellow fever outbreaks
 - 2. Lots of 2-3 story houses
 - a. Thought bad air caused diseases
 - b. Aedes aegypti doesn't fly up very high
 - iii. Mobile Board of Health established in 1816
 - iv. Alabama gained statehood in 1819
 - v. 1875 Alabama Department of Public Health established; health departments established in all 65 counties
 - vi. 1905 last yellow fever outbreak
 - b. Current operations
 - i. 13 inspectors
 - 1. 3 rodent control
 - 2. 10 mosquito control
 - a. Complaints
 - b. Larviciding
 - c. Hand fogging
 - d. Truck fogging
 - e. CDC traps
 - f. Sentinel chickens
 - ii. 1 mechanic
 - iii. 9 night spray truck drivers
 - c. Map
 - i. Bordered by rivers and swamps
 - ii. Mobile Bay
 - iii. Port city multiple dredge sites
 - d. Mosquito species
 - i. Aedes
 - 1. Albos are found everywhere
 - 2. Sollicitans are found all along the coast
 - 3. Taeniorhynchus are found in the southern part of the county
 - 4. Atlanticus, vexans, japonicus
 - ii. Culex
 - 1. Coronator
 - 2. Quincs
 - 3. Nigripalpus and Salinarius
 - iii. Perturbans mostly south of the city
 - iv. Anopheles 3 species
 - v. Psorophora
 - 1. Columbiae

2. Ferox

e. Disease testing through the university

Second Session

- 1. Rosmarie Kelly The History of Aedes aegypti in Georgia
- 2. Joe Conlon Malaria: History's Killer
 - a. Many historical figures have died of malaria over history
 - i. Malaria was found in temperate as well as tropical areas
 - ii. History has been altered due to malaria
 - b. The Vatican was moved to its present location due to malaria
 - c. Many US presidents suffered from recurring bouts of malaria
 - d. Malaria was no respecter of status, wealth, or career
 - e. Malaria has been an important issue in war
 - i. Napoleon used malaria as a biological weapon
 - ii. During the Revolutionary War, quinine was one of the big expenditures for the troops
 - iii. Disease, including malaria, killed and incapacitated more soldiers that battle
 - f. CDC developed due to malaria
 - g. The mosquito has killed more people than any other cause in history
 - h. Malaria has become a tropical disease due to:
 - i. Standard of living in temperate areas
 - ii. Public Health
 - iii. Mosquito control
- 3. Cameron Gundry Molecular Diagnostics Vector Program
 - a. Co-Diagnostic Inc
 - i. Real-time PCR multiplex test kit
 - ii. Mission-based company
 - iii. Human and environmental testing
 - 1. Arboviruses
 - 2. Malaria
 - b. PCR
 - i. Exponential duplication as opposed to linear
 - ii. Generates billions of DNA or RNA copies
 - iii. Detector is fluorescent
 - iv. Process has been extremely streamlined from the original process
 - c. Process
 - i. Capture mosquitoes
 - ii. Extract DNA or RNA
 - iii. Run PCR
 - d. Available test types
 - i. RAMP test immunological technique
 - ii. VectorTest immunological technique
 - iii. PCR test
 - 1. RNA or DNA
 - 2. Amenable to testing for multiple viruses at one time
 - iv. Sequencing techniques
- 4. Annie Thompson Education and Outreach in Mosquito Control

a. Education is part of IPM -

http://www.gamosquito.org/resources/papers/AMCA_BMP.pdf

- b. Education
 - i. Training personnel
 - 1. Start with entry into program
 - 2. Annual standardized training to keep up with current info
 - a. Diverse topics
 - b. Refreshers
 - 3. Professional meetings
 - 4. Resources for Pest Control Professionals
 - ii. Public education
 - 1. Write curriculum targeting Georgia Teaching Standards
 - 2. County events
 - 3. Health fairs
 - 4. Goal: communicate a message of personal protection and mosquito prevention
 - iii. Requested outreach
 - 1. Asked to provide information
 - 2. Usually grows from an interaction with a member of the public
 - iv. Social media proceed with caution
 - 1. Website ecphd.com/environmental-health/mosquito.html
 - 2. Exterior links
 - 3. DPH Facebook
- c. Why do this?
 - i. Recruit support
 - ii. Promote partnerships
 - iii. Promote funding
 - iv. Reduces misconceptions
 - v. Increases reported issues
 - vi. Shows community support
 - vii. Builds reputation
- 5. Industry Spotlight
 - a. Central Life Sciences Kelly Deutsch
 - i. Altosid Duplex granule methoprene core with Bti shell
 - ii. Altosid P35 spherical pellets
 - iii. Strike midge control
 - b. Clarke Mosquito Control Joe Strickhouser
 - i. Maris 3.0 natural unsynergized pyrethrum
 - ii. Equipment and product
 - iii. Joe is retiring new rep will be Sydney
- 6. Tiffany Nguyen Insecticide Resistance Testing in Georgia
 - a. What is pesticide resistance?
 - i. Product no longer works well or at all
 - ii. Comes about because the product is used too often or incorrectly
 - b. How to determine resistance Bottle Bioassay

(https://www.cdc.gov/parasites/education_training/lab/bottlebioassay.html)

- i. Collect eggs
- ii. Rear mosquito to adult stage

- iii. Expose mosquitoes to known pesticides
- iv. See if mosquitoes die
- c. Our process
 - i. Got funding
 - ii. Set up lab in Richmond County
 - iii. Focused on high risk areas
 - iv. Prelim data
 - 1. Southern counties, 2018
 - a. Aedes albopictus susceptible to permethrin
 - b. *Culex quinquefasciatus* varied levels of resistance to permethrin
 - 2. 2019 data
 - a. Varied levels of resistance to permethrin in both species
 - b. Quincs were susceptible to malathion
 - c. Preliminary data show resistance to permethrin and deltamethrin
 - d. *Aedes albopictus* showed higher mortality with the synergistic added, and were susceptible to bifenthrin
 - v. We need help
 - 1. Help us collect eggs
 - a. Plastic shoe boxes painted black
 - b. Unbleached paper towels
 - c. Water or hay infusion depends on species
 - d. Binder clips to hold paper towels
 - 2. Aedes
 - a. Leave trays overnight
 - b. Keep towels moist for 3 days
 - c. Store in a dry spot until they can be hatched
 - 3. Culex
 - a. Leave trays out overnight
 - b. Collect eggs in a small container (urine cup)
 - c. Hatch
- d. Lessons learned
 - i. No larvicide in hay infusion
 - ii. Clean jugs to transport hay infusion
 - iii. Keep eggs moist in order to allow them to embryonate
 - iv. It can be hard to get supplies
- e. Sharing the results
 - i. Share, not blame
 - ii. Focus on cost efficacy
 - iii. Provide data
 - iv. Talk about IPM
- f. Malathion
 - i. Cost
 - ii. Cleaning equipment
 - iii. Acceptability

Third Session

- 1. Savannah Duke Alabama Report: Current Status in the Vector World
 - a. Centralized
 - i. 2 semiautonomous counties
 - ii. No centralized mosquito control
 - b. 67 counties 66 health departments
 - c. Just broke a very long drought
 - d. AlabamaPublicHealth.gov/infectiousdiseases
 - e. Mosquito surveillance at ID&O
 - i. Conduct mosquito and MBD surveillance
 - ii. Map the presence of albos and aegypti
 - 1. *Aedes aegypti* found in Mobile in 2017
 - 2. Ochlerotatus japonicus is also spreading in Alabama
 - iii. Pesticide resistance
 - iv. Courtesy yard inspections by environmentalists started with ZIKV
 - f. Egg collections
 - i. Used for surveillance
 - ii. Plan to start insecticide resistance studies
 - g. Tick surveillance begins winter of 2019
 - h. Plan to start in-house testing using RAMP test
- 2. Laura Peaty Trapping Mosquitoes: The Good, The Bad, and The Ugly
 - a. A lot of information can be determined by trapping
 - b. Influences
 - i. Weather
 - ii. Collection time
 - iii. Choice of trap
 - iv. Seasonality
 - v. Choice of bait
 - c. Types of traps used
 - i. New Jersey light traps
 - ii. Truck traps used in the 1960s
 - iii. Bait traps used hamsters and chicks
 - iv. Chicken sentinels and exit traps
 - 1. Established in 1981
 - 2. Switched to individual birds in 1992
 - 3. Added exit trap in 2005
 - v. CDC light trap
 - vi. Gravid trap started use in 2001
 - 1. First WNV+ mosquito pool in 2001
 - 2. Also use to collect Culex eggs
 - vii. BGS trap
 - 1. Lures
 - a. Octenol
 - b. BG lure
 - 2. Started using this in 2014
 - d. Smart trap technology
 - i. Remote sensing device for BGS trap
 - 1. Received August 2019
 - 2. Counts small, mosquitoes, and large

- 3. Issues
 - a. Battery died starting using 500-amp car battery
 - b. Getting the mosquitoes out was a problem
 - c. Had to reset the lure location in trap
 - d. Over estimated number of mosquitoes by quite a bit
 - e. GPS coordinates were not always accurate
- ii. Could the counter be used with a CDC light trap?
 - 1. Had to be temporary so devises could be put back to usual use
 - 2. Still had issues with power and counts
 - a. Used 3 batteries
 - i. Light
 - ii. Fan
 - iii. Counter
 - b. Put counter above motor
 - c. Saw an improvement in accuracy
- e. Lessons learned
 - i. Battery power needs to be increased
 - ii. Collection cup needs modification
- f. Future goals
 - i. Try gravid trap
 - ii. Use CO2 cylinder
 - iii. Traps that actually ID mosquitoes by wingbeat frequency or saliva
- 3. Eva Buckner CDC Bottle Bioassay Results Show Need for Rotating Organophosphate and Pyrethroid-Based Adulticides against Florida *Aedes aegypti* and *Culex quinquefasciatus*
 - a. Domestic mosquitoes
 - i. Aedes aegypti
 - ii. Aedes albopictus
 - iii. Culex quinquefasciatus
 - b. Domestic mosquito control
 - i. Education
 - ii. Source reduction
 - iii. Larvicide
 - iv. Adulticides
 - c. Factors influencing resistance
 - i. Mosquito control products
 - ii. Other sources of pesticides associated with urban environments
 - d. Parker et al, 2019 JOVE, Distribution of Florida Domestic Mosquitoes
 - e. Current project
 - i. Continue Parker et al work
 - ii. Determine distribution of *Culex quinquefasciatus*
 - iii. Resistance testing
 - iv. Map distribution and insecticide susceptibility maps
 - f. Results
 - i. Study has been ongoing for ~1.3 years
 - ii. Insecticide susceptibility maps
 - 1. Susceptible >95% mortality
 - 2. Developing resistance 90-95% mortality
 - 3. Resistance <90% mortality

- g. Using resistance testing results to make management recommendations
 - i. Report with results for all AI tested
 - ii. Management recommendations based on results
- h. FMEL.IFAS.UFL.EDU

i.

- i. Reporting on insecticide Resistance in Georgia
- ii. Updated every 3 months
- Journal of the Florida Mosquito Control Association has been reincarnated
- 4. Roxanne Connelly CDC Hurricane Funding and Current Activities of the Arboviral Disease Branch, 2019
 - a. <u>https://www.cdc.gov/ncezid/dvbd/index.html</u>
 - i. Branches are based on pathogen
 - 1. Mosquito
 - 2. Ticks
 - ii. Several funding mechanisms
 - 1. Broad agency agreements special circumstances
 - 2. ELC annual funding
 - a. 2019 new 5-year cycle
 - b. Ticks and mosquitoes are now combined
 - c. Funding usually depends on disease du jour
 - 3. Regional Centers of Excellence funded for 5 years
 - a. Applied research
 - b. Responsive training
 - c. Community of practice (collaboration/communication)
 - 4. Hurricane funding
 - a. Cycle
 - i. Started in 2018
 - ii. Hurricanes were in 2017
 - iii. Ends September/December 2020
 - b. Varied uses for funding
 - c. Internal use of money
 - i. Resistance testing kits
 - ii. On-line taxonomic key
 - iii. Evaluation of novel interventions Wolbachia-infected male mosquitoes
 - iv. JAMCA mosquito control response to natural disasters
 - iii. 2019 big EEE outbreak in NE over to Michigan
 - iv. Future projects
 - 1. Update WNV guidelines
 - 2. Meet with European CDC
 - 3. Intervention evaluations does aerial spraying reduce human cases
- 5. Chris Lesser AMCA National Update (<u>Www.mosquito.org</u>)
 - a. Current issues
 - i. Federal funding
 - ii. NPDES can no longer support this fight
 - iii. SMASH Act passed the House and Senate, waiting on Appropriations
 - iv. Organic farms regulatory language
 - v. EPA round table discussion on malathion
 - vi. Endangered Species Act AMCA continues to be involved

- vii. National Wildlife Refuges like butting your head against a wall
- viii. Pesticide registration and re-registration
- b. Current business manager is Dave Butler from AMG
- c. JAMCA is now open access format
- d. Webinars are free to members
- e. BMPs, 2017
- f. Train the Trainer workshops
- g. Free eLearning modules
- h. AMCA Research Fund
- i. Young Professionals group created in 2010
- j. Washington Conference, May12-13, 2020
- k. Next annual meeting, March 16-20, 2020 in Portland, Oregon
- 6. Industry Update
 - a. Co-Diagnostics Sean Egin
 - b. AMVAC Peter Connelly
- 7. Dan Suiter Household Pests
 - a. Training Center
 - i. Started as a termite training center
 - ii. Added components for other pests
 - 1. Bed bugs
 - 2. Commercial IPM (cockroaches)
 - 3. 10-week certificate program
 - 4. School IPM
 - 5. Home IPM
 - iii. 67 unique credit hours per year
 - iv. Strong GDA interaction
 - b. Webinar program
 - i. Monthly
 - ii. Live
 - iii. 24 CEUs per year for Structural Pest Control industry
 - iv. CAT 41 CEUs (1-800-ASK-UGA1)
 - 1. Go to County Extension Agents office
 - 2. Pay fee
 - 3. Watch archived webinar
 - 4. Fill out paperwork for 1 CEU
 - c. Key pests in Georgia invasive species
 - i. Asian needle ant
 - 1. First found in Decatur
 - 2. Native to Asia
 - 3. Found under yard debris
 - ii. Tawny crazy ant
 - 1. Found in 7 southern Georgia counties
 - 2. Honey dew farmers
 - 3. Found in leaf litter and under trash
 - 4. Tawny crazy ant eliminates fire 🐜
 - iii. Formosan termites
 - 1. Native to China
 - 2. Very destructive

- 3. Came in through the ports
- 4. Being distributed through the movement of railroad cross ties
- 5. Identification
 - a. Caramel color
 - b. Swarms at night
 - c. Attracted to light
 - d. Starts swarming in May (native termites swarm in Feb)
 - e. Produce large numbers of soldiers
 - f. Tear drop shaped head
- iv. Anobiine powderpost beetle
 - 1. Cause damage to crawl space joists
 - 2. Not much is known about them
- v. Turkestan cockroach
 - 1. Blattid
 - 2. Males have wings
 - 3. Strong odor
- vi. Smokybrown cockroach
- 8. Lorenza Beati Tick Training Update
 - a. US National Tick Collection
 - i. Collection is over 100 years old
 - ii. Belongs to Smithsonian
 - iii. Moved to GSU in 1990
 - 1. Jim Keirans curator
 - 2. Jim Oliver director of ISP
 - iv. ~96% of the world's described tick species
 - v. Large library on ticks and TBDs
 - vi. Collection is curated
 - b. Research
 - i. Morphological
 - ii. Ecological
 - iii. Epidemiological
 - iv. Molecular
 - c. Education
 - i. Field work
 - ii. Service to public and tick researchers
 - iii. Student studies
 - iv. Outreach
 - d. Training
 - i. Taxonomy
 - ii. Online resource <u>http://us-tick-key.klacto.net/</u>
 - 1. Basic pictorial key
 - 2. Ticks of eastern US
 - iii. Tick Workshop through SE Center of Excellence
 - 1. Started in 2018
 - 2. 2 weeks
 - 3. Variety of topics
 - iv. One-to-one training available
 - v. 2 fellowships available for thesis master's students

vi. Collaboration is vital

Fourth Session

- 1. Sophia Racey Dirofilariasis: A Model for Onchocerciasis?
 - a. Onchocerciasis river blindness
 - i. 2nd cause of infectious blindness worldwide
 - ii. Cause terrible itching
 - iii. Huge economic problem
 - iv. Vectored by black fly
 - v. Difficult to cure
 - b. Onchocercidae
 - i. Dirofilaria immitis and Ochocerca volvulus are in the same roundworm family
 - ii. Dog heartworm
 - 1. Vectored by mosquitoes
 - 2. Mature in malpighian tubules
 - 3. Migrate to mouthparts
 - iii. River blindness
 - 1. Vectored by black fly
 - 2. Mature in flight muscles
 - 3. Migrate to mouthparts
 - c. Study
 - i. Autogenous female flies from lab
 - ii. Blood feeding container used to feed females on infected blood
 - iii. Dissected to look for microfilaria to be sure they passed the ciberial armature (https://www.ncbi.nlm.nih.gov/pubmed/7949322)
 - iv. Let others live to see if microfilaria would mature to L3
 - 1. Black flies died before microfilaria could have matured
 - 2. Tried different blood type to no avail
- 2. Dariana Rodriguez, Christopher Slaton, & Emily Evans Early Season Abundance of *Culex* restuans
 - a. Mosquito surveillance
 - i. 14 trap sites
 - ii. Lowndes County
 - iii. Mosquitoes pooled for viral testing
 - iv. Use both CDC and gravid traps
 - b. Culex restuans
 - i. 2 peaks of activity spring and fall
 - ii. Estivate during high temperature periods
 - c. Study
 - i. Is there an association between increase in restuans and number of WNV pools?
 - 1. Factor 1: how late do restuans persist in spring
 - 2. Factor 2: week when ration of restuans to quincs exceeded 1 (crossover)
 - 3. Factor 3: overall abundance
 - ii. Looked at sites with a high risk of WNV activity
 - iii. Statistical analysis
 - 1. Looked at the 3 factors and WNV MLE
 - 2. Correlation coefficients

- a. Last week of persistence no correlation
- b. Crossover no correlation
- c. Overall abundance moderate correlation
- d. Results
 - i. Regression line for abundance and MLE
 - ii. Predicted an infection rate within what was actually found in 2019
 - iii. There are other variables in play as regression line only explains ~46% of the data
- e. Why?
 - i. Restuans likely amplifies virus early in the year
 - ii. Restuans overwinter as adults with minor activity
 - iii. It is possible that WNV overwinters in restuans
 - iv. Overwintering mechanism for WNV is not completely understood
- 3. Darold Batzer Mosquito Populations in Carolina Bays
 - a. What is a Carolina Bay?
 - i. Depression wetland
 - ii. Forested
 - iii. Not sure where they come from
 - iv. Vegetation and amount of water varies
 - b. Mosquitoes in these bays light traps
 - i. Culiseta melanura
 - ii. A variety of Culex spp
 - iii. Cq perturbans
 - iv. Anopheles crucians
 - v. Others
 - c. EEE
 - *i.* Overwintering mechanism is unknown
 - ii. All the components for EEE transmission found in Carolina Bays
 - 1. Enzootic vector
 - 2. Birds
 - 3. Bridge vectors
 - iii. Tested mosquitoes but got no virus isolations
 - d. Some interesting discoveries
 - i. Cq perturbans were not univoltine
 - ii. May be bivoltine in Georgia
 - iii. Possible bridge vectors
 - 1. Late season perturbans
 - 2. Culex spp
 - e. Ecology of Carolina Bays
 - i. Lots of mosquito predators found
 - ii. Assumption lots of predators would lead to few mosquitoes
 - 1. Some predators were better at controlling mosquitoes than others
 - 2. No negative correlations between mosquitoes and predators
 - a. Mosquitoes appeared to adapt to living with the predators
 - b. Probably enough vegetation to protect the mosquito larvae
 - c. However, larval densities per sample were low
 - d. Carolina Bays are typically large, so they still produce significant numbers of mosquitoes

- e. Larval control would be large
- 4. Joe Iburg Mosquito Control in the Desert and the Bullhead City Experience
 - a. Bullhead City abatement program
 - i. Black fly control program due to increase in black fly after dam was placed in the 70s
 - 1. Mostly nuisance species
 - 2. Rarely bite
 - ii. Started having a mosquito problem
 - 1. Primary mosquito species
 - a. Ps columbiae
 - b. Ae vexans
 - c. Cx tarsalis
 - 2. City wanted to increase soccer tourism
 - 3. Had huge brightly lit fields that were constantly irrigated
 - 4. Larvae found in pockets of water in heavily irrigated grass
 - 5. There is also a lot of flood irrigation in area being blown into town by strong south winds
 - a. Became a political issue
 - *b.* Fields are owned by many different groups including the Mojave Indians
 - c. Use it or lose it system of water rights
 - d. Lots of Bermuda grass grown for seed
 - 6. Control
 - a. Larvicide
 - *i.* Altosid and Natular in sports fields
 - *ii.* Vectolex used in fields
 - *iii.* Larvicide applied via backpack spreader
 - b. Aerial application of adulticide used after hatch
 - *i.* Fyfanon worked but wasn't allowed everywhere
 - ii. Naled wasn't accepted
 - iii. Duet worked fairly well
 - *iv.* Deltagard is water-based and just didn't work well in a desert environment
 - c. Fogged sport fields
 - b. Also had a caddisfly issue (https://www.britannica.com/animal/caddisfly)
 - i. Nuisance issue
 - ii. Similar behavior to the black fly
 - iii. No products are labeled for caddisfly control
 - 1. Spraying adults is ineffective and hazardous to the environment
 - 2. Larvicides that kill caddisfly would kill everything else
 - 3. Contributing factors
 - a. Davis Dam completion
 - b. Black fly suppression
 - c. Quagga mussel introduction cleaned water
 - d. Koi herpes virus killed carp
 - e. Willow beach fishery failure fewer trout
 - f. Diatom overgrowth
 - g. Other

- i. Bats
- ii. Swallows
- iii. Effluent
- iv. Bed stabilization
- v. Water temperature
- vi. Climate
- vii. Unknowns
- iv. Possible fixes
 - 1. Restock trout
 - a. Feed on caddisfly at all stages
 - b. Excess fish add excess nutrients
 - c. Endangered species issue
 - d. Invasive fish ate the trout
 - 2. Trapping
 - 3. Attractant pheromones to interrupt mating
 - 4. Water quality research
 - 5. Homeowner education
- 5. Doug Nelson Good Housekeeping in Mosquito Control
 - a. Prevents
 - i. Injury
 - ii. Spills
 - iii. Fines
 - iv. Environmental issues
 - v. Death
 - b. Follow SOPs
 - c. Includes preventative maintenance
 - d. Requires
 - i. Proper PPE
 - ii. Spill kits
 - iii. Training and education
 - e. Things requiring good housekeeping
 - i. Chemical storage
 - 1. Chemical rooms have sprinkler systems
 - 2. Floors are beveled to prevent spills
 - ii. Chemical waste
 - iii. Spill kits at storm drains
 - iv. Facility is Category 3 storm rated
 - v. Hurricane plan in place
 - f. Underground fuel tanks
- 6. Mark Blackmore Geographic Variation in Vector Prevalence and WNV Detection in Lowndes County
 - a. Locations
 - i. Different habitats at surveillance sites in Lowndes County
 - ii. Dixie Plantation in north Florida
 - b. Weekly data collection
 - i. 12-14 locations
 - ii. 2 trap types
 - 1. CDC

- 2. Gravid
- iii. Primarily urban/suburban
- iv. Testing
 - 1. Plaque assay
 - 2. RT-PCR
- c. Mosquitoes
 - i. 35 species found
 - ii. Viruses
 - 1. EEE
 - 2. LAC
 - 3. WNV
 - 4. Flanders and variant
 - 5. Highlands J
 - 6. Keystone
 - iii. Minimum infection rates vary between locations
- d. Site characterization
 - i. Vegetation
 - ii. % wetlands
 - iii. Virus activity
 - 1. # positive pools
 - 2. How often the site is positive
 - iv. Mosquito species diversity hot spots have lower species diversity
- e. Some other studies
 - i. WNV exposure serosurvey
 - ii. Human behavior, as related to mosquito exposure, survey
 - iii. Avian population assessments
 - iv. Climate patterns and WNV
- f. What is the true risk based on exposure and behavior?

Business Meeting

2019-2020 Board

- 1. President Allan Hillman
- 2. VP Laura Peaty
- 3. Members
 - a. 1-year: Tiffany Nguyen
 - b. 2-year: Doug Nelson
 - c. 3-year: Annie Thompson\
- 4. Secretary/Treasurer Karen Farris
- 5. Sustaining member Jason Conrad (Univar)
- 6. Past president Steve Pavlovich